2,857 research outputs found

    Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay

    Full text link
    Long Interspersed Nuclear Elements (L1s or LINEs) are the most abundant retrotransposons in the human genome, and they comprise approximately 17% of DNA. L1 retrotransposition can be mutagenic, and deleterious insertions both in the germ-line and in somatic cells have resulted in disease. Recently, an assay was developed to monitor L1 retrotransposition in cultured human cells. This assay, for the first time, now allows for a systematic study of L1 retrotransposition at the molecular level. Here, I will review progress made in L1 biology during the past three years. In general, I will limit the discussion to studies conducted on human L1s. However, interesting parallels to rodent L1s and other non-LTR retrotransposons also will be discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42793/1/10709_2004_Article_263353.pd

    Introduction for the Gene special issue dedicated to the meeting Genomic impact of eukaryotic transposable elements at Asilomar

    Get PDF
    The issues related to \u27Genomic Impact of Eukaryotic Transposable Elements\u27, which took place in Pacific Grove, California between March 31st and April 4th 2006, are discussed. The meeting celebrated the extraordinary contributions of Dr. Carl W. Schmid to the study of repeated DNA sequences and mobile elements. With the advent of recombinant DNA technology, he led the discovery of human Alu elements, and the discovery of their amplification. The idea of the conference was to gather and disseminate information in transposable elements (TEs) on the state-of-the-art tools and approaches. The core sessions from the conference covered research on transposable elements with a strong emphasis on their impact on genomic stability and evolution. The scientific sessions were complemented by after-dinner workshop sessions focusing on Repbase, computer tools used in annotation and analysis of repetitive DNA and open problems related to the field

    Genomic impact of eukaryotic transposable elements

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mobile DNA 3 (2012): 19, doi:10.1186/1759-8753-3-19.The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.The conference was supported in part by the National Institutes of Health grant 5 P41 LM006252

    Transduction‐Specific ATLAS Reveals a Cohort of Highly Active L 1 Retrotransposons in Human Populations

    Full text link
    L ong IN terspersed E lement‐1 ( LINE ‐1 or L 1) retrotransposons are the only autonomously active transposable elements in the human genome. The average human genome contains ∌80–100 active L1s, but only a subset of these L1s are highly active or ‘hot’. Human L1s are closely related in sequence, making it difficult to decipher progenitor/offspring relationships using traditional phylogenetic methods. However, L1 m RNA s can sometimes bypass their own polyadenylation signal and instead utilize fortuitous polyadenylation signals in 3â€Č flanking genomic DNA . Retrotransposition of the resultant m RNA s then results in lineage specific sequence “tags” (i.e., 3â€Č transductions) that mark the descendants of active L1 progenitors. Here, we developed a method (Transduction‐Specific Amplification Typing of L1 Active Subfamilies or TS ‐ ATLAS ) that exploits L1 3â€Č transductions to identify active L1 lineages in a genome‐wide context. TS ‐ ATLAS enabled the characterization of a putative active progenitor of one L1 lineage that includes the disease causing L1 insertion L1 RP , and the identification of new retrotransposition events within two other “hot” L1 lineages. Intriguingly, the analysis of the newly discovered transduction lineage members suggests that L1 polyadenylation, even within a lineage, is highly stochastic. Thus, TS ‐ ATLAS provides a new tool to explore the dynamics of L1 lineage evolution and retrotransposon biology. Long INterspersed Element‐1 (L1) retrotransposons are the only independently mobile elements in the human genome. We developed Transduction‐Specific Amplification Typing of L1 Active Subfamilies (TS‐ATLAS), which utilizes L1‐transduced genomic sequences, to identify a subset of highly active L1s genome‐wide. TS‐ATLAS enabled the characterization of the putative progenitor of an active disease‐causing L1 lineage, and identified new retrotransposition events within two other “hot” L1 lineages.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/1/humu22327.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98809/2/humu22327-sup-0001-si.pd

    Genomic impact of eukaryotic transposable elements

    Full text link
    Abstract The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.http://deepblue.lib.umich.edu/bitstream/2027.42/112619/1/13100_2012_Article_57.pd

    LINE-1 Retrotransposition Activity in Human Genomes

    Get PDF
    SummaryHighly active (i.e., “hot”) long interspersed element-1 (LINE-1 or L1) sequences comprise the bulk of retrotransposition activity in the human genome; however, the abundance of hot L1s in the human population remains largely unexplored. Here, we used a fosmid-based, paired-end DNA sequencing strategy to identify 68 full-length L1s that are differentially present among individuals but are absent from the human genome reference sequence. The majority of these L1s were highly active in a cultured cell retrotransposition assay. Genotyping 26 elements revealed that two L1s are only found in Africa and that two more are absent from the H952 subset of the Human Genome Diversity Panel. Therefore, these results suggest that hot L1s are more abundant in the human population than previously appreciated, and that ongoing L1 retrotransposition continues to be a major source of interindividual genetic variation

    Establishment and Spread of a Single Parthenogenic Genotype of the Mediterranean arundo wasp, Tetramesa romana1, In the Variable Climate of Texas

    Get PDF
    As part of a biological control program for the invasive weed, Arundo donax L., several genotypically unique populations of the parthenogenetic stemgalling wasp, Tetramesa romana Walker (Hymenoptera: Eurytomidae), from Spain and France were released in an infested riparian zone along the Rio Grande from Brownsville to Del Rio, TX. An adventive population of the wasp of unknown origin with limited distribution in Texas was also discovered, evaluated, and released as part of the program. More than 1.2 million wasps representing the mixture of genotypes were aerially released from 2009 to 2011. Wasps dispersed from their original release locations and now have a continuous distribution along the Rio Grande from Brownsville to Del Rio, and have dispersed throughout most of Central Texas with satellite populations as far west as San Angelo (Tom Green County), north as far as Kaufman (Kaufman County), and east to Navasota (Grimes County). The most successful genotype (#4) represented 390 of the 409 wasps recovered and matched both an imported population from the Mediterranean coast of Spain and an adventive population established in Texas before the start of the biological control program. Several other European genotypes of the wasp released in the program apparently failed to establish. This result demonstrated the benefits of evaluating and releasing the maximum genetic diversity of the biological control agent in the introduced range. Abundance of T. romana on the Rio Grande from Laredo to Del Rio averaged 190% more in 2013-2014 compared to a similar study in 2008-2009 before release of the European wasps. A favorability index was developed that showed that conditions from 1969 to 1977 would have been adverse to the wasp; conditions after 2009 were more favorable. Climate matching predicts the wasp will disperse throughout the southern U.S. and Mexico

    Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii

    Get PDF
    The marine nitrogen fixing microorganisms (diazotrophs) are a major source of nitrogen to open ocean ecosystems and are predicted to be limited by iron in most marine environments. Here we use global and targeted proteomic analyses on a key unicellular marine diazotroph Crocosphaera watsonii to reveal large scale diel changes in its proteome, including substantial variations in concentrations of iron metalloproteins involved in nitrogen fixation and photosynthesis, as well as nocturnal flavodoxin production. The daily synthesis and degradation of enzymes in coordination with their utilization results in a lowered cellular metalloenzyme inventory that requires ~40% less iron than if these enzymes were maintained throughout the diel cycle. This strategy is energetically expensive, but appears to serve as an important adaptation for confronting the iron scarcity of the open oceans. A global numerical model of ocean circulation, biogeochemistry and ecosystems suggests that Crocosphaera’s ability to reduce its iron-metalloenzyme inventory provides two advantages: It allows Crocosphaera to inhabit regions lower in iron and allows the same iron supply to support higher Crocosphaera biomass and nitrogen fixation than if they did not have this reduced iron requirement.National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0452883)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0752291)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0723667)National Science Foundation (U.S.). Chemical and Biological Oceanography Program (OCE-0928414)National Science Foundation (U.S.). Polar Program (ANT-0732665)United States. Environmental Protection Agency (Star Fellowship)Woods Hole Oceanographic Institution. Ocean Life InstituteCenter for Microbial Oceanography: Research and EducationCenter for Environmental Bioinorganic Chemistr
    • 

    corecore